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Abstract

In the present paper, a large rotational approach for dynamic contact problems with friction is proposed.
The approach is used for modelling a spur gear pair with shafts and bearings. The model is obtained by
superposing small displacement elasticity on rigid-body motions, and postulating tribological laws on the
gear flanks. The finite element method is used to model the elastic properties of the gear pair. Shafts and
bearings are represented by linear springs. The tribological laws of the contact interface are Signorini’s
contact law and Coulomb’s law of friction. An important feature of the approach is that the difficulties of
impacting mass nodes are avoided. The governing equations of the model are numerically treated by use of
the augmented Lagrangian approach. In such manner the geometry of the gear flanks are well represented
in the numerical simulations. It is possible to study accurately the consequences of different types of profile
modifications as well as flank errors. In this work, the dynamic transmission error is studied. For instance,
it turns out that the effect from profile modification is less significant for the transmission error when
frictional effects are included.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A major concern in gear design is gear noise. The main source of gear noise is the appearance of
non-uniform rotations of the gear wheels. This is a consequence of deviations from the desired
geometry of the flank profiles and the non-rigidity of the gears. The deviations of the flank
geometry are a result of the manufacturing process and wear. The non-rigidity gives rise to a
periodic mesh stiffness variation since a different number of teeth are in contact during the
revolution. The non-uniform rotation will induce vibrations that will be transmitted through
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shafts and bearings to the gearbox housing. Another source of excitation is friction. In this work,
a flexible multi-body approach for dynamic contact problem with friction is suggested. The
approach is utilised in order to study how flank geometry, non-rigidity and friction influence the
level of noise in a gear problem. In particular, the dynamic transmission error for a spur gear pair
with shafts and bearings is studied.

In order to compare different gear designs with respect to gear noise, the transmission error is
used. The transmission error is defined as the difference between the actual position of the gear
and its position according to the gear ratio. Consequently, a time-varying transmission error
implies a non-uniform rotation of the gear even though the pinion rotates at a constant speed. It is
well-known that a larger peak-to-peak value of the transmission error usually results in a higher
noise level, see e.g. Ref. [1]. The transmission error is called the static transmission error for quasi-
static mesh cycles. When dynamic effects are included the measure is called the dynamic
transmission error.

To predict the dynamic response of a gear system, a common procedure in gear design is to
calculate the static transmission error followed by a harmonic response analysis. Models of this
kind, which in the most simple case consist of two masses and a spring, representing the mean
mesh stiffness, are discussed in Ref. [2]. In Ref. [3] a non-linear dynamic gear model, consisting of
the two gear wheel bodies, is analysed. The infinitesimal displacement field governed by the finite
element method was superposed on prescribed rigid-body motions. A more general approach is
used in Ref. [4] where the rigid-body motions were regarded as unknowns. The method was
applied to planetary gear trains. Another approach is used in Ref. [5] where a lumped parameter
model represents the complete gear system. The contact interface is represented by a set of
independent springs along the contact line and corresponding initial gaps. In Refs. [6–8] the effect
of friction on the dynamics for a gear pair was studied by lumped parameter models. Examples of
more recent works, where friction excitations in gears have been studied, are Refs. [9,10].

The objective in this work is to investigate the dynamic response of a spur gear pair with shafts
and bearings when the effect from friction is also included. For that purpose a large rotational
approach including Signorini contact and Coulomb friction is suggested. The total motion is
defined by superposing small displacement elasticity on rigid-body motions. The inertia of each
gear is represented by a point mass and a mass moment of inertia at its centre. The elastic
properties of the gears are obtained by using the finite element method. The contact and friction
laws of the contact interfaces between the gear flanks are formulated directly in the nodal degrees
of freedom of the finite element model. Time integration is carried out by applying the average
acceleration method such that no numerical dissipation is generated. The fact that there is no
mass associated with the nodal points of the finite element model is an important feature as the
average acceleration method is used. In Ref. [11] it is clearly demonstrated that by applying the
average acceleration method in connection with a contact formulation of the type used here might
cause energy growth in the system. However, this phenomenon is restricted to the case when mass
is associated with the impacting nodes which, of course, is not the case in the formulation
presented here as inertia is treated in a rigid-body fashion.

In the presented model, the motion of the input shaft is kept homogenous and the exciting
source then originates from the geometry of the gear flanks and the mesh-stiffness variation,
which are the main components of the static transmission error. Furthermore, as friction is
included, the sliding condition between the gear flanks is also a source of excitation. Obviously,
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one requirement for obtaining the correct excitation is to represent the geometry of the mating
gear flanks accurately. Another requirement is that the sliding conditions between the gear flanks
are predicted accurately. In Refs. [12,13] an augmented Lagrangian method was developed where
these requirements can be met. The method was further developed and implemented in Ref. [14]
for solving fretting problems. In Ref. [15] it was numerically shown that this method is superior to
an interior point method both in performance and robustness. Later, the method was successfully
applied to gear problems [16,17]. In the latter work, the method was used to calculate the static
transmission error. In the present paper the augmented Lagrangian approach is utilised to solve
the governing equations of the dynamic gear problem discussed above. In particular, the dynamic
transmission error and friction force excitation are studied.

2. The dynamic gear problem

A flexible multi-body approach for dynamic contact problems with friction is suggested.2 The
approach is used for modelling a gear pair with shafts and bearings, see Fig. 1. The model is
obtained by superposing small displacement elasticity on rigid-body motions. The pinion
mounted on the right shaft is denoted gear i ¼ 1 and the wheel mounted on the left shaft is
denoted gear i ¼ 2: The spatial position of a material point of gear i; represented by a position
vector Xi relative to the centre of the gear, is given by

xi ¼ QiXi þ ci þ ui; ð1Þ

where

Qi ¼ QiðyiðtÞÞ ¼

cos yi �sin yi 0

sin yi cos yi 0

0 0 1

2
64

3
75 ð2Þ

is a rotation matrix. Here, y1 is an angle, which is a given function of time t; that represents the
rotation of the right end of the right shaft, see Fig. 1. Consequently, the input torque is taken as
an unknown quantity. This is in accordance with the assumption made in Ref. [7], where it is
pointed out that gears cannot be assumed to operate under constant input and output torque
when friction is included. If no elastic deformations are present and the gear flanks are perfect
involutes, then the left shaft has a rotation y2 which is defined by

y2Z2 ¼ �y1Z1; ð3Þ

where Zi is the number of teeth on gear i: The vector ci defines the centre of the gear and the
vector ui ¼ uiðQiXi; tÞ is the displacement due to elastic deformations, see Fig. 1. In this paper, the
applied rotation is assumed to be a linear function of time, i.e., y1 ¼ o1t where o1 is a constant
angular velocity.

The elastic deformations of the centre of gear i are represented by di
q ¼ fdi

x; d
i
y;j

igT; such that
the total rotation is ji þ yi and uið0; tÞ ¼ di

xex þ di
yey: Here, the infinitesimal rotations ji are not
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only due to elastic deformations, but also due to deviations in flank geometry from perfect
involutes. Furthermore, T denotes the transpose of a vector or a matrix and ex; ey and ez are unit
vectors in the x; y and z directions, see Fig. 1. The unit vectors are oriented in such manner that
the line of action is orthogonal to ez: In the numerical simulations, it is assumed that ex coincides
with the line of action. Except for the prescribed rotation y1; the degrees of freedom at the right
end point of the right shaft are fixed. The left point of the left shaft is fixed in translation and its
total rotational position is y2 þ j3:

The inertia of each gear is in the model manifested through a lumped mass at each centre and a
mass moment of inertia about the ez-axis. For simplicity, both gears are assumed to have the same
mass and the same mass moment of inertia, denoted by m and J; respectively. The mass of the left
shaft is manifested by a mass moment of inertia J about the ez-axis located at the left end point of
the left shaft.

A torsional spring, with a spring constant ks; and two translational springs, both with a spring
constant kb; are attached to the centre of each wheel, representing the stiffness of the shafts and
the bearings. The arrangement of the translational springs indicates that any cross coupling term
of the bearings are assumed to be zero. According to Ref. [6], this is a most reasonable
approximation. A constant force couple C3

z is applied to the left end of the lower torsional spring.
The laws of motion for the right shaft read (here it has been taken into account that .y1 ¼ 0)

ex: R1
x � kbd1

x ¼ m .d1
x;

ey: R1
y � kbd1

y ¼ m .d1
y;

ez: C1
z � ksj1 ¼ J .j1; ð4Þ
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where R1
q ¼ fR1

x;R
1
y;C

1
zg

T are reactions from the centre of the upper gear. Here and in sequel we
let a superimposed dot represents the time derivative and a double dot stands for the second time
derivative.

The laws of motion for the left shaft can be expressed as (taking into account that .y2 ¼ 0)

ex: R2
x � kbd2

x ¼ m .d 2
x ;

ey: R2
y � kbd2

y ¼ m .d 2
y ;

ez: C2
z � ksðj2 � j3Þ ¼ J .j2 ð5Þ

and

ez: C3
z � ksðj3 � j2Þ ¼ J .j3: ð6Þ

Here, R2
q ¼ fR2

x;R
2
y;C

2
z g

T are reactions from the centre of the lower gear.
Even though the mass of the gears is represented in a rigid-body fashion, the elastic properties

are modelled in more detail. These are obtained by performing finite element discretisations of the
rigid-body configurations of the gears. On these configurations, defined by QiXi þ ci; a small
displacement formulation is added using isotropic elasticity. Plain strain is assumed. The contact
between the gears is treated using a common potential contact surface, obtained by a node-to-
node discretisation, which is a standard technique in small displacement contact mechanics, see
e.g. Ref. [21]. A typical finite element mesh of the gears used in the numerical calculations is
reproduced in Fig. 1. It is important to understand that a benefit of this flexible multi-body
approach is the avoidance of impacting mass nodes. The difficulties of impacting mass nodes are
discussed in Ref. [19]. For a more detailed presentation of the finite element treatment outlined
below, see e.g. Ref. [21].

The resulting stiffness equation of each gear can be written as

Ki
cc Ki

cd Ki
cq

Ki
dc Ki

dd Ki
dq

Ki
qc Ki

qd Ki
qq

2
664

3
775

ui
c

ui
d

di
q

8><
>:

9>=
>;þ

Fi
c

0

0

8><
>:

9>=
>; ¼

0

0

�Ri
q

8><
>:

9>=
>;; ð7Þ

where Ki
cc ¼ Ki

ccðtÞ; K
i
cd ¼ Ki

cdðtÞ; etc. are stiffness matrices. Note that ui
c and ui

d are column
vectors, related to and formed from, but not to be confused with, the geometric three-dimensional
vector ui: A subscript c corresponds to nodal degrees of freedom at the potential contact surface,
q corresponds to the freedoms at the centre of the gear and d corresponds to all the other finite
element displacement freedoms. Note also that stiffness matrices are strictly related to a certain
rigid-body configuration and may, thus, be seen as functions of yiðtÞ: Furthermore, the following
principle of action and reaction is used:

F1
c ¼ �F2

c ¼ CT
nPn þ CT

t Pt; ð8Þ

where Pn ¼ fpjng is the normal contact force vector and Pt ¼ fpjtg is the tangential contact force
vector. Matrices Cn and Ct are transformation matrices defined by the normal and the tangential
direction of the contact surface. The geometry of the spur involute gears implies that these
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matrices are constant in time as well as in space, see Refs. [16,17]. By utilising Cn and Ct;
the normal displacement ui

jn and the tangential displacement ui
jt of a contact node j can be

obtained by

ui
jn ¼ Cjnu

i
c and ui

jt ¼ Cjtu
i
c;

where Cjn and Cjt are the jth rows of Cn and Ct; respectively.
The unilateral contact law can now be formulated as

pjnX0; Cjn %uc � gjp0; pjnðCjn %uc � gjÞ ¼ 0; ð9Þ

by using the relative contact displacement %uc ¼ u1c � u
2
c and the initial contact gap

gj ¼ CjnffQ2X2 þ c2gc � fQ1X1 þ c1gcg;

where fQiXi þ cigc represents the column vectors of the rigid-body positions of the contact nodes.
Furthermore, by introducing the relative tangential velocity

’wjt ¼ Cjtð ’x1c � ’x2cÞ; ð10Þ

the law of friction is expressed by3

j ’wjtjpjt ¼ ’wjtmðpjnÞþ; jpjtjpmðpjnÞþ; ð11Þ

where m is the coefficient of friction and 2ðxÞþ ¼ x þ jxj is used. In Eq. (10), ’xi
c are column vectors

formed from the time derivative of (1), i.e.,

’xi ¼ oiez 	QiXi þ ’ui; ð12Þ

where 	 stands for the vector product. Note that ’ui is the material time derivative where Xi is kept
fixed.

The dynamic gear problem has now been stated in Eqs. (4)–(7), (9) and (11). That is, on a time
interval ½0;T �{t; find t/ui

c; t/ui
d ; t/di

q; t/Fi
c and t/Ri

q such that these equations are
satisfied for the prescribed rotation y1 ¼ o1t and the constant force couple C3

z : In particular, the
authors are interested in investigating the following quantity:

TE ¼ ðy2 þ j2Þ þ
Z1

Z2
ðy1 þ j1Þ ¼ j2 þ

Z1

Z2
j1; ð13Þ

defining the transmission error. The numerical treatment of the problem is outlined in the
following sections.

3. Time discretisation

The dynamic gear problem is solved by introducing discretisations in time. The authors want to
formulate an incremental problem which utilises known quantities at time tn to calculate
quantities at time tnþ1: Note that the rigid-body configuration at time tnþ1 is trivial to calculate
and the difficulty lies in calculating the elastic deformations at this time. Accelerations appearing

ARTICLE IN PRESS

3This is a useful formulation of Coulomb’s friction law. That is, if ’wjt ¼ 0; then jpjtjpmpjn; but if ’wjta0; then

pjt ¼ mpjnsgnð ’wjtÞ:

O. Lundvall et al. / Journal of Sound and Vibration 278 (2004) 479–499484



in Eqs. (4)–(6) are approximated using the average acceleration method:

di
qðtnþ1Þ ¼ di

qðtnÞ þ
Dt

2
f’di

qðtnÞ þ ’di
qðtnþ1Þg;

’di
qðtnþ1Þ ¼ ’di

qðtnÞ þ
Dt

2
f.di

qðtnÞ þ .di
qðtnþ1Þg; ð14Þ

where Dt ¼ tnþ1 � tn is the time step. Velocities appearing in Eq. (10) is treated by using a
backward Euler approximation for ’ui; i.e.,

’uiC
uiðQiðtnþ1ÞXi; tnþ1Þ � uiðQiðtnÞXi; tnÞ

Dt
: ð15Þ

The rotation matrices Qiðtnþ1Þ define the rigid-body configuration at time tnþ1: They are directly
obtained from the definition in Eq. (2) and the angular velocities o1 and o2; where the latter is, of
course, defined by o2Z2 ¼ �o1Z1; see Eq. (3). To obtain the last term in Eq. (15) is not as trivial
as it may seem. In fact, a difficulty arises here due to the finite element discretisation. Since a node-
to-node contact treatment requires remeshing, a new mesh and a new potential contact surface are
defined on the corresponding rigid-body configuration for every new time tnþ1: Consequently, if a
contact node is located at Xi at time tnþ1; a node is not necessarily, and probably not, located at
this material point in the finite element mesh corresponding to time tn: This difficulty is treated by
introducing an interpolation, see Appendix A.

Inserting Eq. (14) in Eq. (4) yields

K1d1qðtnþ1Þ ¼ R1
q þ F

1; ð16Þ

where

K1 ¼

4m

Dt2
þ kb 0 0

0
4m

Dt2
þ kb 0

0 0
4J

Dt2
þ ks

2
6666664

3
7777775

ð17Þ

and

F1 ¼

m
4d1

xðtnÞ
Dt2

þ
4 ’d1

xðtnÞ
Dt

þ .d1
xðtnÞ

� �

m
4d1

y ðtnÞ

Dt2
þ

4 ’d1
yðtnÞ

Dt
þ .d1

yðtnÞ

 !

J
4j1ðtnÞ
Dt2

þ
4 ’j1ðtnÞ
Dt

þ .j1ðtnÞ
� �

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
: ð18Þ

Furthermore, by inserting Eq. (14) in Eqs. (5) and (6) and eliminating j3ðtnþ1Þ; one obtains

K2d2qðtnþ1Þ ¼ R2
q þ F

2; ð19Þ

ARTICLE IN PRESS

O. Lundvall et al. / Journal of Sound and Vibration 278 (2004) 479–499 485



where

K2 ¼

4m

Dt2
þ kb 0 0

0
4m

Dt2
þ kb 0

0 0
4J

Dt2
þ

4Jks

4J þ Dt2ks

2
6666664

3
7777775

ð20Þ

and

F2 ¼

m
4d2

xðtnÞ
Dt2

þ
4 ’d2

xðtnÞ
Dt

þ .d 2
x ðtnÞ

� �

m
4d2

y ðtnÞ

Dt2
þ

4 ’d2
yðtnÞ

Dt
þ .d 2

y ðtnÞ

 !

J
4j2ðtnÞ
Dt2

þ
4 ’j2ðtnÞ
Dt

þ .j2ðtnÞ
� �

þ?

JksDt2

4J þ Dt2ks

4j3ðtnÞ
Dt2

þ
4 ’j3ðtnÞ
Dt

þ .j3ðtnÞ
� �

þ
Dt2ksC

3
z

4J þ Dt2ks

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

: ð21Þ

Eqs. (7), (16) and (19) are put together in order to eliminate di
qðtnþ1Þ and Ri

q: The result is

Ki
cc � K

i
cqK

i
invK

i
qc Ki

cd � K
i
cqK

i
invK

i
qd

Ki
dc � K

i
dqK

i
invK

i
qc Ki

dd � Ki
dqK

i
invK

i
qd

" #
ui

c

ui
d

( )
þ

Fi
c

0

( )
þ

Ki
cqK

i
invF

i

Ki
dqK

i
invF

i

( )
¼

0

0

( )
; ð22Þ

where Ki
inv ¼ ½Ki

qq þ K
i��1: Note here that Eq. (7) is evaluated at time tnþ1; i.e., at y

iðtnþ1Þ:
Finally, putting Eqs. (12) and (15) in Eq. (10) results in

’wjtCCjtv
rigid
c þ Cjt

u1cðtnþ1Þ � u2cðtnþ1Þ
Dt

�
u1cðtnÞ � u2cðtnÞ

Dt

� �
; ð23Þ

where vrigid
c is the part of the relative velocity that is due to the rigid-body motion. It is calculated

by forming a column vector from the geometric vector o1ez 	Q1X1 � o2ez 	Q2X2:

4. Augmented Lagrangian formulation

The equations to be solved are now given by Eqs. (9), (11) and (22), where in addition
expressions in Eqs. (8), (12) and (23) are also needed. The solution is obtained by reformulating
these equations as an augmented Lagrangian system of equations which in turn is solved using a
non-smooth Newton method. This approach has proven to be very successful for solving friction
problems, see e.g. Refs. [14–17,22–24]. Most recently, the approach was utilised to solve dynamic
wear problems in Ref. [25]. The approach is briefly discussed below. Details can be found in the
references just cited.
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The main idea of the approach is to reformulate the contact and friction laws defined by
Eqs. (9) and (11) as equivalent non-smooth equations. These equations are

pjn ¼ ðpjn þ rðCjn %uc � gjÞÞþ; ð24Þ

pjt ¼
pjt þ rðCjt %uc þ wold

jt Þ if jpjt þ rðCjt %uc þ wold
jt ÞjpmðpjnÞþ;

mðpjnÞþsgnðpit þ rðCjt %uc þ wold
jt ÞÞ otherwise;

(
ð25Þ

where

wold
jt ¼ DtCjtv

rigid
c � Cjt %ucðtnÞ:

These equations are, of course, treated fully implicitly, i.e., %uc ¼ %ucðtnþ1Þ:
The dynamic gear problem is now presented as an augmented Lagrangian formulation by

Eqs. (22) and (24)–(25). This system of equations is solved by using the Newton algorithm
presented in Appendix B. When the method is implemented the equilibrium equation (22) is
reduced even further by performing a static condensation such that it is expressed using %uc as the
only unknown instead of using ui

c and ui
d ; see Appendix C.

5. Numerical results

The numerical method outlined above is used to calculate the transmission error defined in
Eq. (13). The transmission error is studied for different mesh frequencies ðfm ¼ o1Z1=2pÞ and
different amount of profile modification (see Fig. 7). Results are presented both for cases with
friction ðm ¼ 0:1Þ and without friction ðm ¼ 0Þ: In the calculations, extra system damping is added
in order to represent viscosity of oil and friction in bearings. For each shaft regarded
alone Rayleigh damping is assumed. By applying Rayleigh damping, Eqs. (4), (5) and(6) are
modified to read

ex: R1
x � kbd1

x � ðakb þ bmÞ ’d1
x ¼ m .d1

x;

ey: R1
y � kbd1

y � ðakb þ bmÞ ’d1
y ¼ m .d1

y;

ez: C1
z � ksj1 � ðaks þ bJÞ ’j1 ¼ J .j1; ð26Þ

ex: R2
x � kbd2

x � ðakb þ bmÞ ’d2
x ¼ m .d 2

x ;

ey: R2
y � kbd2

y � ðakb þ bmÞ ’d2
y ¼ m .d 2

y ;

ez: C2
z � ksðj2 � j3Þ � bJ ’j2 � aksð ’j2 � ’j3Þ ¼ J .j2 ð27Þ

and

ez: C3
z � ksðj3 � j2Þ � bJ ’j3 � aksð ’j3 � ’j2Þ ¼ J .j3: ð28Þ

This modification does not significantly affect the numerical treatment outlined in the previous
section.

If Rayleigh damping is excluded, global loss of contact is obtained. This implies that large
values of TE are calculated, indicating that the unloaded flanks at the opposite side of the gear
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teeth would come into contact. Since these flanks are not considered to be parts of the potential
contact surface such results can not be regarded as physical solutions.

Model data are listed in Tables 1 and 2, where gear data is contained in the latter. Gear data are
identical to those used in Ref. [17]. The commercial finite element program Ansys 5.7 is used to
generate the stiffness matrices. A four noded plane strain element (Plane42) is used with extra
displacement shapes included. Young’s modulus, E; and Poisson ratio, n; are given in Table 1. In
the numerical implementation the base vectors ex and ey are assumed to coincide with the normal
and tangential direction of the contact interface. That is, ex coincides with the line of action, and
ey is parallel to the off-line of action. Furthermore, depending on the number of teeth in contact,
20–40 contact nodes are used. The length of each contact interface is 1:5 mm:

First, the influence of friction on the transmission error is studied for the quasi-static case. The
quasi-static solution is approximated by choosing a sufficiently small value of the mesh frequency
ðfm ¼ 0:01 HzÞ: In Fig. 2, where two quasi-static cases are compared, the influence on TE and d2

y

from friction is viewed. In the case without friction there is no global tangential displacement at
all. To explain the curves in Fig. 2 look at Fig. 3 where an ideal picture is given of the total friction
force Pt for two different time instants. In this figure rbp denotes the so-called base pitch. In
Fig. 3(a), two flank pairs are in contact. The resulting moment is then rbpPt=2 and the resulting
friction force is zero. The latter explains why d2

y is approximately zero at the beginning of a mesh
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Table 1

Model data

a 0.4	 10�3 s

b 0.5	 10�3 1/s

J 24.5 kgmm2

m 4.9	 10�3 Ns2=mm

kb 0.155	 106 N/mm

ks 0.203	 109 Nmm/rad

C3
z 0.437	 106 Nmm

E 2.06	 105 N=mm2

n 0.3

Table 2

Gear data (see e.g. Ref. [1])

Centre distance 91.5 mm

Module 4.5 mm

Pressure angle 20�

Pinion Gear

Number of teeth 16 24

Pitch diameter 73.2 mm 109.8 mm

Outside diameter 82.64 mm 118.64 mm

Root diameter 62.50 mm 98.37 mm

Tooth width 15.0 mm 15.0 mm

Addendum mod. coef. 0.196 0.125

O. Lundvall et al. / Journal of Sound and Vibration 278 (2004) 479–499488



cycle. In Fig. 3(b), only one flank pair is in contact. As the point of contact moves across the pitch
point the resulting moment goes from ePt to�ePt and the resulting force form �Pt to Pt: Looking
at d2

y at the end of a mesh cycle in Fig. 2, this is clearly seen. For the specific gear data,
approximate values of rbp and e are 13.3 and 21:0 mm; respectively. Clearly, torque is transmitted
via friction. As C3

z is constant, the line of action force and the off line of action force interact in
order to balance this torque in the quasi-static case. Accordingly, this interaction will not only
influence the reaction forces R1

x and R1
y but also C1

z ; see Fig. 4. When friction is included, a sudden
change in the static transmission error is seen at the end of a mesh cycle, cf. Fig. 2. This is due
to the fact that it is possible for the centre of a gear wheel to be displaced. Because of the
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Fig. 2. Static transmission error and shaft deflection d2
y of the left shaft (two mesh cycles).

Fig. 3. Friction forces on the gear (to the right). In (a) two flank pairs are in contact and in (b) only one flank pair is in

contact.
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time-varying line of action force, there is a time-varying displacement of the centre of this gear
wheel in the same direction. This displacement is coupled to the rotation of the other gear wheel
which affects the transmission error. This effect is not seen in a purely torsional model, cf. Ref. [17].

In the next case, dynamic effects are taken into account by applying a rotational speed that
corresponds to a mesh frequency of 200 Hz: In Fig. 5, the curves corresponding to the curves in
Fig. 2 are viewed. In the first plot, the shape of the curves look almost the same. However the
dashed curve ðm ¼ 0Þ is somewhat lagging behind. It is interesting to note that the curve for d2

y still
reminds one of the corresponding curve in Fig. 2.

In Fig. 6 the peak-to-peak value of the dynamic transmission error (TEPP) is plotted as a
function of the mesh frequency where it is also seen that for high mesh frequencies the dynamic
transmission error is less than the static transmission error (cf. Fig. 2). It can be concluded that in
this case, the presence of friction always increases TEPP:

In order to reduce the effect from mesh stiffness variations, different kinds of profile
modifications are used, see e.g. Ref. [1]. In Fig. 7, material is removed from parts of the flank that
are loaded when two pairs of teeth are in contact. The modification is measured along the normal
direction of the unmodified gear flank. In this model, profile modifications are included in the
initial gaps gj:

In the last case, a profile modification will be studied which is linear in the roll angle, see
Eq. (A.1) in the appendix. The maximum modification depth, which is the same for pinion and
gear, will be at the tip of the gear tooth. The modification starts at the highest point of single tooth
contact ðHPSTCÞ: The roll angle at HPSTC is 29:61� for the pinion and 27:64� for the gear. The
modification used here is of the same type as used in Ref. [7]. The interaction between the mesh

ARTICLE IN PRESS

Fig. 4. Reaction forces and force couple in a quasi-static case (unmodified gear).
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Fig. 6. Peak-to-peak dynamic transmission error versus mesh frequency. Solid line: m ¼ 0:1 and dashed line: m ¼ 0:

Fig. 5. Dynamic transmission error and shaft deflection d2
y of the left shaft (two mesh cycles). Solid line: m ¼ 0:1 and

dashed line: m ¼ 0:
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forces is viewed in Fig. 8. The curve of the total friction force, i.e., R1
y; has almost the same

appearance as the one achieved in Ref. [7] when Coulomb friction was used.
In Fig. 9, TEPP is calculated for different profile modifications. In this figure it can be seen

that the optimal value for the modification depends on whether friction is included or
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Fig. 7. Profile modification.

Fig. 8. Reaction forces and force couple in a quasi-static case for a modified gear with a maximum modification depth

of 31 mm:
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not. However, the differences are relatively small. Therefore, in gear design, it is reasonable to
neglect friction and calculate static TEPP in order to optimize the profile modification. By
comparing Figs. 6 and 10 it can be seen that the improvement achieved by the profile modification
is less significant when friction is included.

6. Conclusions and discussion

In this work a flexible multi-body model is developed where the main idea is to represent the
contact interface in a gear mesh accurately enough to account for profile modifications and
manufacturing errors, which are both in the order of 5–50 mm: The dynamic response of such a
model is the main result, where the flank geometries, the mesh stiffness variations as well as
friction are the sources of force excitation. The effect of friction is emphasised and it is concluded
that it has an effect even on the motion in the rotational direction. The dynamic transmission
error was calculated for a large number of mesh frequencies. It is noticeable that the dynamic
transmission error is less than the static one at high mesh frequencies that are far from natural
frequencies. By studying different amounts of profile modification it is concluded that optimal
values for the profile modification are not the same depending on whether frictional effects are
included or not. It is also concluded that the possibility to decrease the dynamic transmission
error by applying profile modifications is reduced in the case of friction.
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Fig. 9. TEPP versus maximum modification depth. Solid line: mesh frequency 200 Hz with m ¼ 0:1; dashed line: mesh

frequency 200 Hz with m ¼ 0 and dotted line: mesh frequency 0:01 Hz with m ¼ 0 (static).

O. Lundvall et al. / Journal of Sound and Vibration 278 (2004) 479–499 493



The model data used in the numerical analyses have somewhat exaggerated values. The friction
coefficient is somewhat too large and the lowest natural frequency is too low. The particular
choice of these parameters is such that the properties of the system should appear better.
However, in the model itself any value of the above are of course applicable. In order to verify the
model the Load Distribution Program (LDP) [26] is used and good agreement was achieved for a
quasi-static case with no friction. In a quasi-static case with friction, the total friction force for a
modified gear is viewed in Fig. 8. This curve is compared with the one calculated in Ref. [7], where
the total friction force was predicted for a gear with a similar type of modification, assuming
Coulomb friction. Of course, a direct comparison is not possible but the appearances of the curves
have a remarkable resemblance. In the dynamic cases studied in this work, it can be concluded
that friction always tends to increase the peak-to-peak transmission error. This conclusion can
also be drawn by studying the results presented in Ref. [8].

In this work only spur gears are treated in order to demonstrate the method and to predict some
qualitative results. The method is however not restricted to the two-dimensional case. In general,
helical gears are used exclusively in gearboxes today and to study gears with a helix angle is
therefore a topic for further work.
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Fig. 10. Peak-to-peak dynamic transmission error versus mesh frequency for a gear with a maximum modification

depth of 31 mm: Solid line: m ¼ 0:1 and dashed line: m ¼ 0:
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Appendix A. Interpolation—remeshing

When ’ui is approximated in Eq. (15) a difficulty arises due to the remeshing performed at every
new time tnþ1: For a displacement uiðQðtnþ1ÞXi

j; tnþ1Þ at a node defined by the position vector Xi
j

the corresponding nodal displacement uiðQðtnÞXi
j; tnÞ do not necessarily exist due to a different

mesh at time tn compared to the mesh used at time tnþ1: This difficulty is treated by the approach
outlined in this appendix. Notations used are defined by Fig. 11.

For a given gear flank, a material point is uniquely defined by the roll angle. The roll angle is
given by

Wi
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðri

jÞ
2 � ðrbÞ

2
q

rb

; ðA:1Þ

where ri
j is the radius of the material point identified by the position vector Xi

j: The roll angle is the
sum of the involute polar angle c and the pressure angle x: Thus, for each time tn there exists a set
Ni

n ¼ fWi
1;y; Wi

xg defining the nodes of the contact surface. For a nodal displacement
uiðWi

j; tnþ1Þ ¼ ui
cðQðtnþ1ÞXi

j; tnþ1Þ the corresponding Wi
j is checked against Ni

n in order to find
Wi

loWi
joWi

lþ1: Then, ui
cðW

i
j; tnÞ is approximated according to

uiðWi
j; tnÞCð1� ZÞuiðWi

l ; tnÞ þ ZuiðWi
lþ1; tnÞ; ðA:2Þ

where

Z ¼
Wi

j � Wi
l

Wi
lþ1 � Wi

l

: ðA:3Þ

If Wi
l ¼ Wi

j; then, of course, u
iðWi

j; tnÞ ¼ uiðWi
l ; tnÞ: If W

i
je½Wi

1;W
i
x�; then the following approximation is

adopted:

uiðWi
j; tnÞC

0 �ji 0

ji 0 0

0 0 0

2
64

3
75QðotnÞXi

j þ

di
x

di
y

0

8><
>:

9>=
>;: ðA:4Þ
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Fig. 11. The interpolation using the geometry of the involute gear.
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This latter approximation might be arguable. A nicer approach would be to treat all nodes on the
gear flanks as contact nodes. However, such an approach would be more time consuming and
achieving a node-to-node condition would then be somewhat cumbersome.

Appendix B. Newton algorithm

Let

HðyÞ ¼ 0

express the non-smooth equations (24), (25) and (C.1). This system of equations is solved using
the following algorithm:

Algorithm. Let b ¼ 0:9; g ¼ 0:1 and e small. Repeat the following steps for each time tnþ1:

1. Let y0 be the solution from the previous time tn and set q ¼ 0:
2. Find a search direction z such that

HðyqÞ þH0ðyq; zÞ ¼ 0;

where H0ðyq; zÞ is the directional derivative. Explicit expression for this directional derivative
can be found in e.g. Ref. [15].

3. Let aq ¼ bmq ; where mq is the smallest integer 0pmp22 for which the following decrease
criterion holds:

Fðyq þ bmzÞpð1� 2gbmÞFðyqÞ; FðyÞ ¼ 1
2
HTðyÞHðyÞ:

4. Set yqþ1 ¼ yq þ aqz:
5. If Fðyqþ1Þpe; then terminate with yqþ1 as an approximate zero of HðyÞ: Otherwise, replace q by

q þ 1 and return to step 1.

Appendix C. Reducing to %uc

By performing a static condensation, Eq. (22) can formally be written as

K1
c 0

0 K2
c

" #
u1c

u2c

( )
þ

F1
c

F2
c

( )
þ

F1
e

F2
e

( )
¼

0

0

( )
;

where Ki
c represents resulting stiffness matrices and Fi

e presents the external forces. By using the
definition of %uc and F1

c ¼ �F2
c ; this may be written as

K1
c K1

c

0 K2
c

" #
%uc

u2c

( )
þ

F1
c

�F1
c

( )
þ

F1
e

F2
e

( )
¼

0

0

( )
:
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Now, by adding the first row to the second row, one obtains

K1
c K1

c

K1
c K1

c þ K
2
c

" #
%uc

u2c

( )
þ

F1
c

0

( )
þ

F1
e

F1
e þ F

2
e

( )
¼

0

0

( )
:

Finally, by reducing u2c ; one arrives at

½K1
c � K

1
c ½K

1
c þ K

2
c �
�1K1

c �%uc þ F1
c þ F

1
e � K

1
c ½K

1
c þ K

2
c �
�1fF1

e þ F
2
eg ¼ 0: ðC:1Þ

In the numerical implementation Eqs. (24), (25) and (C.1) define the augmented Lagrangian
system which is solved using the algorithm presented in Appendix B.

Appendix D. Nomenclature

C force couple
C transformation matrix
E Young’s modulus
F column vector of forces and moments
J mass moment of inertia
K stiffness matrix
P column vector of nodal contact forces
Q rotation matrix
R reaction force
TE transmission error
X position vector in reference configuration
Z number of teeth
c position vector of gear centre
d displacement of gear centre
e base vector
fm mesh frequency
g initial gap
kb translational stiffness
ks torsional stiffness
m mass
p nodal contact force
t time
u nodal displacement
u nodal displacement vector
vrigid column vector of rigid relative nodal velocities
’w relative nodal velocity
x position vector in current configuration
a stiffness proportional damping coefficient
b mass proportional damping coefficient
y prescribed rotation
m coefficient of friction
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n Poisson’s ratio
j infinitesimal rotation
o angular velocity

Subscripts
c finite element degrees of freedom of potential contact surface
d finite element degrees of freedom
j node pair reference number
n normal direction
q degrees of freedom of shaft system
t tangential direction
x; y; z global co-ordinate directions

Superscripts
i reference to pinion ði ¼ 1Þ and gear ði ¼ 2Þ
T matrix transpose
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